ЗМІСТ p>
ВСТУП 2 p>
1. ЗАГАЛЬНА ЧАСТИНА 3 p>
1.1. Мета розробки 3 p>
1.2. Аналіз використання розробки 3 p>
1.3. Аналіз методів рішення задачі 3 p>
1.4. Аналіз засобів програмування 4 p>
1.4.1. Огляд засобів програмування 4 p>
1.4.2. Характеристика програмного забезпечення 4 p>
1.4.3. Характеристика ПК 6 p>
1.4.4. Характеристика мови програмування 6 p>
2. СПЕЦІАЛЬНА ЧАСТИНА 8 p>
2.1. Постановка завдання 8 p>
2.2. Економіко - математична модель 12 p>
2.3. Описи методу Гурвіца 13 p>
2.4. Алгоритм задачі 14 p>
2.4.1. Алгоритм основної програми 14 p>
2.4.2. Алгоритм процедури W_rezultat 15 p>
2.5. Опис алгоритму 21 p>
2.5.1. Опис алгоритму основної програми 21 p>
2.5.2. Описи основної процедури W_rezultat розрахунку за методом
Гурвіца 21 p>
2.6. Характеристика програми 24 p>
2.7. Опис процесу налагодження 24 p>
2.8. Результати рішення задачі 25 p>
2.9. Оцінки результатів рішення задачі 27 p>
ВИСНОВОК 28 p>
СПИСОК ЛІТЕРАТУРИ 29 p>
Додаток 1 Текст програми 30 p>
Додаток 2. Результати роботи програми 36 p>
ВСТУП p>
У курсовому проекті представлена завдання теорія ігор. P>
Одним з розділів теорії ігор є змагальні завдання в умовахневизначеності. Змагальні завдання - це завдання, в якихстикаються інтереси 2-х або більше сторін, які переслідують різні цілі.
Для вирішення цих завдань використовується методи теорії ігор. Для змагальнихзавдань в умовах невизначеності в теорії ігор розроблені відповідніпринципи, на підставі яких невизначені ситуації перетворюється надетерміновані і вирішуються методом Максиміна. p>
Згідно з принципом Гурвіца нерозумно, взявши до уваги самиймаленький виграш, не враховувати найбільший, для чого необхідно ввестикоефіцієнти оптимізму (він виконує роль ймовірності). Значення оптимізмувибирають на підставі суб'єктивних міркувань. У технічних додаткахскладно вибрати коефіцієнт оптимізму, тому що важко знайти кількіснухарактеристику для тих часткою оптимізму і песимізму, які присутніпри прийнятті рішення. Принцип Гурвіца враховує як песимістичний, так іоптимістичний підхід до ситуації. p>
ЗАГАЛЬНА ЧАСТИНА p>
1 Мета розробки p>
Даний курсовий проект розроблявся з метою вивести ситуацію зумови невизначеності; знайти максимальний виграш, за якимвизначити оптимальну стратегію кожного гравця і гравця дозволяєконфліктну ситуацію. p>
2 Аналіз використання розробки p>
Даний курсовий проект призначений для прогнозування в навчальнихзакладах p>
3 Аналіз методів рішення задачі p>
Для вирішення змагальних завдань в умовах невизначеності в теоріїігор розроблені відповідні принципи, на підставі якихневизначені ситуації перетворюються на детерміновані умови івирішуються наступними методами: метод Максиміна, метод Мінімакс, принцип
Гурвіца, метод Севіджа, метод Бейеса-Лапласа. В даному курсовому проектівикористовувався принцип Гурвіца. p>
4 Аналіз засобів програмування p>
1 Огляд засобів програмування p>
Цю програму можна написати на різний мовах програмування:
Сі, Бейсік, Асемблер т. д. У даній випадку вибрана мова Object
Pascal (допрацьована різновид мови Pascal), тому що він різнився від Бейсікаі Асемблера тим, що середовище розробки Delphi має широкі можливостівізуальної розробки (розробник під час розробки може бачитиінтерфейс своєї програми і розміщувати на ній компоненти) іінтелектуальну систему налагодження. Мова Асемблер є незручним вданому випадку, а в мові Бейсик обмежені можливості застосування процедурі функцій, При написанні програми на мові Object Pascal використовуються всіможливості модульності програм, процедури та функції. p>
2 Характеристика програмного забезпечення p>
Операційна система - це сукупність програм, що забезпечуютькерування апаратною частиною комп'ютера і прикладними програмами, а такожвзаємодія між собою і користувачами. p>
Основна функція ОС є її здатність керувати пристроямипам'яті на магнітних дисках. p>
Операційна система MS-DOS складається з наступних частин: базовоїсистеми введення/виводу, завантажувача операційної системи, дискових файлів
IO.SYS і MS-DOS.SYS. P>
В даний час існують більш сучасні ОС, з набагато більшимнабором можливостей. Це ОС MS Windows '95/98/2000/Me, OS/2. P>
Особливість середовища MS Windows
. Стандартизація інтерфейсу користувача.
. Оптимальне керування оперативною пам'яттю обсягом у кілька гігабайт.
. Підтримка пристроїв, що підключаються.
. Інтеграція функцій програм.
. Багатозадачність
. Використання графічного інтерфейсу з віконної системи організації. P>
ОС Windows виконує наступних основні функції:
. Управління файловою системою носіїв інформації (відображення, зміна, створення, переміщення, видалення, перейменування).
. Запуск і завершення прикладних програм.
. Надання сервісів (всілякі налаштування, оптимізація роботи).
. Управління пристроями і BIOS'ом. P>
Ядро Windows і її Опції залежать від складу апаратний засобів,робота з якими здійснюється за допомогою драйверів і BIOS'а. p>
Призначення BIOS - базової системи введення/виводу - полягає у виконаннінайбільш простих і універсальний послуг ОС, пов'язаний зі здійсненнямвведення/виводу і прийом символів з клавіатури, аналіз прийнятої інформації,видача символів на принтер і т.д. BIOS містить також тестфункціонування комп'ютера, що перевіряє роботу пам'яті і пристроївкомп'ютера при включенні його електроживлення. p>
Драйвери пристроїв призначені для організації обміну даними міжвнутрішньої і зовнішньої пам'яттю. Драйвери включаються в роботу в той момент,коли в нього з BDOS надходить команда з пошуку потрібної інформації. Але передцим BIOS налаштовує драйвер на роботу з включення відповідногопристрою. Фізична зв'язок організовується через контролер. P>
3 Характеристика ПК p>
У ПК, на якому розроблявся курсовий проект можна виділити основнічастини:
Монітор: Samsung Sync Master 550 (M) S, максимальна роздільна здатність
1024x768 крапок на дюйм і частота оновлення 75 Гц;
MB: Intel T810B-S;
Процесор: Intel Celeron 366 (Genuine Intel Сімейство 6 Модель 366 MГц
Модифікація 5);
SDRAM: Samsung 64Mb
HDD: 4,2 Gb Quantum;
Дисковод: FDD 1,44 Mb, CD-ROM 40x;
Принтер: Epson FX-1000;
Клавіатура: Розширена клавіатура PC/AT (Windows'98 107 клавіш);
Миша: Стандартна миша для COM-порту; p>
4 Характеристика мови програмування p>
В даний час найбільш поширеними алгоритмічними мовамиє Паскаль, Сі. p>
Мова Паскаль був розроблений в кінці 80-х гадах професором М. Віртом.
Свою назву отримав на честь французького математика і філософа Б.
Паскаля. Мова було створено спеціально для навчання програмуванню. P>
Остання версія Object Pascal дозволила об'єднати в рамкак єдиноїсистеми потужний алгоритмічний потенціал мови, методи об'єктно -орієнтованого програмування, сучасну графіку, зручні засобитестування та налагодження програми, а також забезпечити дружнійінтерфейс з користувачем. p>
Основні оператори мови є хорошою ілюстрацією базовийкеруючий конструкцій структурного програмування. p>
Велику допомогу надає програмістам бібліотека стандартнихпідпрограм Паскаля. Ця бібліотека модернізується і поповнюється вжебільше десяти років, У неї входять засоби для роботи з оперативною та зовнішньоїпам'яттю, клавіатурою, дисплеєм та іншими зовнішніми пристроями ПЕОМ. p>
Графічний пакет системи програмування Delphi - один з найбільшпотужних пакетів такого типу, тому що дозволяє використовувати всі функції граф.бібліотек OpenGL і Direct3D. p>
Система програмування Delphi працює за модульним принципомпрограмування, який лежить в основі всіх сучасних технологійрозробки програм, Програма, написана на Delphi розбита на модулі, аті, у свою чергу, складаються з підпрограм. p>
середу в системі програмування Delphi багатовіконний, на екрані дисплеяодночасно присутні кілька вікон редагування, панель компонент,інспектор об'єктів, редактори форм і т. д. p>
СПЕЦІАЛЬНА ЧАСТИНА p>
1 Постановка завдання p>
Теорія ігор - теорія математичних модулів, інтереси учасників якихрізні, причому вони досягають своєї мети різними шляхами. p>
Зіткнення протилежних інтересів учасників призводить довиникненню конфліктних ситуацій. Щоб виключити труднощі, що виникаютьпри аналізі конфліктних ситуацій, будується спрощена модель ситуацій.
Така модель називається грою. Теорія ігор відноситься до теорії статистичнихрішень. p>
В задачах теорії ігор передбачалося, що в них візьмуть участь двісторони, інтереси яких протилежні. Тому дії кожної сторониспрямовані на збільшення виграшу. Але в багатьох задачах, що призводять доігровим, невизначеність викликана відсутністю інформації про умови, вяких здійснюється дію. Ці умови залежать не від свідомихдій іншого гравця, а від об'єктивної дійсності, яку прийнятоназивати природою. p>
Гру з природою описується за допомогою платіжної матриці, в якій уяк гравець А виступає статистик (людина, яка приймає рішення),що має m можливих стратегій А1, А2, ..., Аm, а в якості другого гравцявиступає природа. p>
План, за яким гравець робить вибір на кожної можливої ситуації іпри кожній можливої фактичної інформації називається стратегій гравця. p>
Головним у дослідженні теорії ігор є вибір оптимальних стратегійгравців. Стратегія гравця є оптимальною, якщо застосування цієїстратегії забезпечить йому найбільший гарантований виграш при всілякихстратегіях іншого гравця. У процесі однієї гри кожен із гравців вибираєодну стратеги. Стратегії поділяються на чисті і змішані. P>
Чистий стратегія - це стратегія, яка має одне єдине значенняабо рішення з безлічі заданих. p>
Змішана (складна) стратегія - це стратегія, яка бере m значеньз відповідними ймовірностями. p>
Сторони беруть участь в конфліктній ситуації називаються гравцями, апередбачувані дії кожного з гравців, спрямовані на досягненняпевної мети, називається правилами гри. p>
Платіж - це кількісна оцінка результатів гри. p>
ходом в теорії ігор називається вибір одного із запропонованих правиламиігри дій його здійсненні. p>
змагальна завдання - це завдання, що вирішує конфліктні ситуаціїміж двома або більше супротивниками з метою знаходження оптимальної стратегіїдля кожного гравця, і в остаточному підсумку гравця, що дозволяє конфліктнуситуацію. p>
Гру двох гравців можна описати як виробничий процес за допомогоюнаступної функціональної схеми (рис.1). p>
Малюнок 2.1.1 p>
Обидва гравця по прямому зв'язку U (t) робить хід, вибираючи передбачуванустратегію. Жоден з гравців не знає ходу противника. У випадку якщо гравецьдізнається стратегію свого супротивника, то по зворотного зв'язку f (t) поступаєсигнал, що він може відмовитися від своєї старої стратегії і вибрати іншустратегію. Встановити роботу по прямому зв'язку U (t). P>
Людина А в іграх з природою намагається діяти обачно,використовуючи, наприклад, мінімаксних стратегію, що дозволяє одержати найменшийпрограш. Другий гравець В (природа) діє абсолютно випадково, можливістратегії визначаються як її стан. Умови гри задаються у виглядіматриці. p>
p>
Елементи Сij = виграшу гравця А, якщо він використовує стратегію АI. p>
В даному курсовому проекті змагальна завдання вирішується за методом
Гурвіца. P>
Нехай у грі беруть участь двоє гравців А і В. p>
Розглядається конфліктна ситуація між двома сторонами А і В. Гравець
А має m стратегій, а В має n стратегій: А = (А1, А1, ..., А1); В = (В1, В1, ...,
В1). P>
Взаємозв'язок між стратегіями будь-якого з гравців визначається платіжноїматрицею С = (Cij) m * n. Cij - виграш гравця А. задані статистичнікоефіцієнти оптимізації (). p>
Мета гри полягає в тому, щоб вивести ситуацію з умовиневизначеності, знайти максимальний виграш, за яким визначитиоптимальну стратегію кожного гравця, а також гравця дозволяєконфліктну ситуацію. p>
Рішення ігри та вихідні дані зводяться в таблицю Гурвіца (табл.
2.1.1). P>
Таблиця 2.1.1 p>
| | В1 | В2 | ... | Вn | Найменший | Найбільший | Коефіцієнти |
| | | | | | | Виграш | оптимізму |
| | | | | | Виграш | | |
| | | | | | | 0,1 | 0,2 | 0,3 |
| А1 | 1 | 1 | 3 | 1 | 3 | 2,8 | 2,6 | 2,4 |
| А2 | 5 | 6 | 8 | 5 | 8 | 7,7 | 7,4 | 7,1 |
| А3 | 4 | 3 | 5 | 3 | 5 | 4,8 | 4,6 | 4,4 | p>
Знайти гравця, що дозволяє конфліктну ситуацію. P>
Знайдемо умовно розрахункові виграші гравця А за формулою: p>
p>
V11 = 0,1 * 1 + (1 - 0,1) * 3 = 2,8 p>
V12 = 0 , 2 * 1 + (1 - 0,2) * 3 = 2,6 p>
V13 = 0,3 * 1 + (1 - 0,3) * 3 = 2,4 p>
V21 = 0,1 * 5 + (1 - 0,1) * 8 = 7,7 p>
V22 = 0,2 * 5 + (1 - 0,2) * 8 = 7 , 4 p>
V23 = 0,3 * 5 + (1 - 0,3) * 8 = 7,1 p>
V31 = 0,1 * 3 + (1 - 0, 1) * 5 = 4,8 p>
V32 = 0,2 * 3 + (1 - 0,2) * 5 = 4,6 p>
V33 = 0,3 * 3 + (1 - 0,3) * 5 = 4,4 p>
Серед знайдених умовних розрахункових виграшів знайдемо максимальний. Віндорівнює 7.7, значить оптимальна стратегія гравця А буде А2. p>
Далі знайдемо оптимальна стратегія гравця В, для цього транспоніруемматрицю. Результати заносимо в таблицю 2.8.2. P>
Таблиця 2.8.2 p>
| | А1 | А2 | А3 | Найменший | Найбільший | Коефіцієнти |
| | | | | Виграш | виграш | оптимізму |
| | | | | | | |
| | | | | | | 0,1 | 0,2 | 0,3 |
| В1 | 1 | 5 | 4 | 1 | 5 | 4,6 | 4,2 | 3,8 |
| В2 | 1 | 6 | 3 | 1 | 6 | 5,5 | 5 | 4,5 |
| В3 | 3 | 8 | 5 | 3 | 8 | 7,5 | 7 | 6,5 | p>
Знайдемо умовно розрахункові виграші гравця В p>
V11 = 0,1 * 1 + (1 - 0,1) * 5 = 4,6 p>
V12 = 0,2 * 1 + (1 - 0,2) * 5 = 4,2 p>
V13 = 0,3 * 1 + (1 - 0,3) * 5 = 3,8 p>
V21 = 0,1 * 1 + (1 - 0,1) * 6 = 5,5 p>
V22 = 0,2 * 1 + (1 - 0,2) * 6 = 5 p>
V23 = 0,3 * 1 + (1 - 0,3) * 6 = 4 , 5 p>
V31 = 0,1 * 3 + (1 - 0,1) * 8 = 7,5 p>
V32 = 0,2 * 3 + (1 - 0, 2) * 8 = 7 p>
V33 = 0,3 * 3 + (1 - 0,3) * 8 = 6,5 p>
Серед знайдених умовних розрахункових виграшів знайдемо максимальний. Віндорівнює 7.5, значить оптимальна стратегія гравця В буде В3. p>
З 2-х оптимальних стратегій, знаходимо найбільший виграш, а саме
7,7> 7,5; отже гравець А дозволить конфліктну ситуацію змаксимальним виграшем рівним 7,7, стратегія якого дорівнює 2. p>
2 Оцінки результатів рішення задачі p>
Результат розв'язання задачі повністю відповідає завданням курсовогопроекту. У порівнянні результатів рішення задачі ручним з результатамиавтоматизованим методом, одержав однакові результати. Що означає щопрограма працює правильно. Перевага автоматизованого методу надручним полягає в тому, що автоматизоване час виконання програмименше, ніж ручним. p>
ВИСНОВОК p>
Дана дипломна робота включає в себе два предмети: «Програмування»і «Компьютерное Модуляція» p>
У курсовій роботі були розглянуті наступні питання:
. Розглянуто характеристика «Теорії ігор» і наступні методи її вирішення: метод Гурвіца, метод Севіджа, метод Максиміна.
. Розглянуто і проаналізовано алгоритм рішення теорії гри в умови невизначеності методом Гурвіца.
. Дана коротка характеристика платіжних карт, включаючи аналіз засобів програмування, описи ОС MS-DOS і MS Windows '
. Розглянуто вибір мови програмування.
. Написана програма для вирішення даного завдання. P>
СПИСОК ЛІТЕРАТУРИ p>
1. Г. С. Малик «Основи економіки та математичні методи в плануванні».
2. Кузнєцов «Математичне програмування».
3. В. В. Фаронов «Delphi 5. Навчальний курс ».
4. Ю. П. Зайченко «Дослідження операцій в задачах, алгоритмах, програмах». P>
Додаток 1 Текст програми p>
Medot_Gurwiwiza.dpr p>
program Medot_Gurwiza;
(Курсовий проект з предмету "Комп'ютерне Модуляція" за темою "Теоріяігор "
Принцип Гурвіца Виконав студент гр. П-00-1 Юшков Андрій 10.06.02)uses
Forms, osnowa in 'osnowa.pas' (form1),
Unit2 in 'Unit2.pas' (Form2); p>
($ R *. RES) p> < p> begin
Application.Initialize;
Application.CreateForm (Tform1, form1);
Application.CreateForm (TForm2, Form2);
Application.Run;end. p>
unit osnowa; p>
interface p>
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Grids, StdCtrls, ToolWin, ComCtrls, Buttons, ActnList, StdActns, Menus,
Mask, ExtCtrls, jpeg; p>
type
Tform1 = class (TForm) tabliza: TStringGrid; p>
Panel1: TPanel; p>
Button1: TButton; p>
Edit1: TEdit; p>
Edit2: TEdit; p>
Edit3: TEdit ; p>
Label2: TLabel; p>
Label3: TLabel; p>
Label4: TLabel; p>
C_S: TStringGrid; p> < p> Panel2: TPanel; p>
Label5: TLabel; p>
Label6: TLabel; p>
Label7: TLabel; p>
Label8: TLabel; p>
Label9: TLabel; p>
Label10: TLabel; p>
Label11: TLabel; p>
Label12: TLabel; p>
Label13: TLabel; p>
Label14: TLabel; p>
Panel3: TPanel; p>
Panel4: TPanel; p>
Label17: TLabel;
Label18: TLabel; p>
Panel5: TPanel; p>
Label19: TLabel; p>
Label20: TLabel; p>
Label21: TLabel; p>
Label22: TLabel; p>
Label23: TLabel; p>
RadioButton7: TRadioButton; p>
RadioButton8: TRadioButton; p>
Button3: TButton; p>
Panel6: TPanel; p>
Label1: TLabel; p>
BitBtn1: TBitBtn; p>
Label15 : TLabel; procedure WWod_koef (Sender: TObject); procedure W_Rezultat (Sender: TObject); procedure W_tabliza_A (Sender: TObject); procedure W_tabliza_B (Sender: TObject); p>
private p>
(Private declarations) public p>
(Public declarations) end; p>
var form1: Tform1; p>
C_B, C_A: array [1 .. 10,1. .10] of integer; (платіжна матрицягравця А, В) a_b, a_m, b_b, b_m: array [1 .. 10] of integer; (найбільший найменшийвиграш иг. А, В) al: array [1 .. 10] of real; (масивальфа) p>
V_A, V_B: array [1 .. 10,1 .. 10] of real; (Розрахункові виграші иг.
А, В) max_a: real; (Найбільший виграш гравця А) max_b: real; (Найбільший виграш гравця У) p>
H_a: integer; (Оптимальна стратегія гравця А) h_b: integer; (Оптимальна стратегія гравця В ) m: Integer; (Кількість стратегій гравця А) n: Integer; (Кількість стратегій гравця У) k: Integer; (Кількістьпро статистичнікоефіцієнтів) p>
I, J: Integer; p>
implementationuses Unit2;
($ R *. DFM) p>
(висновок коеф., Матриці С_А)procedure WW_A; begin form1.c_s.Colcount: = n +1; form1.c_s.Rowcount: = m +1; form1.tabliza.Rowcount: = m +1; for i: = 1 to m do begin form1.tabliza. Cells [0, i]: = 'A' + intToStr (i); form1.C_S.Cells [0, i]: = 'A' + intToStr (i); for j: = 1 to n do begin form1.C_S . Cells [j, 0]: = 'B' + intToStr (j); form1.C_S.Cells [j, i]: = intToStr (C_A [i, j]); end; end; with form1 do begin label23. caption: = 'A'; tabliza.cells [1,0]: = 'a_малая'; tabliza.cells [2,0]: = 'a_большая'; end;end; p>
(Висновок найбільший, найменший, розрахунковий виграш матриці V_А)procedure WW_A1;begin
WW_A; p>
With form1.tabliza Do begin for j: = 1 to n do begin cells [1, j]: = intToStr (a_m [j]); cells [2, j]: = intToStr ( a_b [j]); end; for i: = 1 to m do for j: = 1 to k do cells [j 2, i]: = floatToStr (V_a [i, j]); end;end; p>
(подія на натиснення кнопки 'Введення коеф ..')procedure TForm1.WWod_koef (Sender: TObject);begin try m: = strToint (edit1.text); n: = strToint (edit2.text); k: = strToint (edit3.text); except showMessage ( 'Помилкова запис числа'); end; try p> < p> Form2: = TForm2.Create (self); tabliza.Colcount: = 3 + k; p>
Form2.ShowModal; finally p>
Form2.Close; p>
WW_a; end;end; p>
(подія на натиснення кнопки 'висновок результату')procedure Tform1.W_Rezultat (Sender: TObject);begin p>
Panel6.Visible: = false; panel3.Visible: = true;
(Вводимо з таблиці C_A в матрицю гравця А - C_A) (C_S [стовпець, рядок]) for i: = 1 to m do (по стовпцях m таблиці C_S) for j: = 1 to n do (по рядках n таблиці C_S) p>
C_a [i, j]: = StrToInt (C_S.Cells [j, i] );
(Створюємо матрицю C_B шляхом транспонування матриці гравця А) for i: = 1 to n do for j: = 1 to m do p>
C_b [i, j]: = StrToInt (C_S. Cells [i, j]);
(розрахунок найменших і найбільших виграшів гравця A) for i: = 1 to m do begin a_m [i]: = C_a [i, 1]; (масив найменшими виграш) a_b [i]: = C_a [i, 1]; ( масив найбільший виграш) for j: = 2 to n do begin if C_a [i, j] a_b [i] then a_b [i]: = C_a [i, j]; end;
(обчислення розрахункових виграшів гравця A) for j: = 1 to k do p>
V_a [i, j]: = al [j] * a_m [i] + (1-al [j]) * a_b [i]; end;
(знаходження оптимальної стратегії і максимального виграшу гравця A) max_a: = V_a [1,1];
H_A: = 1; for i: = 1 to m do for j: = 1 to k do if V_a [i, j ]> max_A then begin max_a: = V_a [i, j]; (максимальний виграш гравця
А) p>
H_a: = i (оптимальна стратегіягравця А) end; p>
(розрахунок найменших і найбільших виграшів гравця У) for i: = 1 to n do begin b_m [i]: = C_b [i, 1]; (масив найменшими виграш) b_b [ i]: = C_b [i, 1]; (масив найбільший виграш) for j: = 2 to m do begin if C_b [i, j] b_b [i] then b_b [i]: = C_b [i, j]; end;
(обчислення розрахункових виграшів гравця У) for j: = 1 to k do p>
V_b [i, j]: = al [j] * b_m [i] + (1-al [j]) * b_b [i]; end;
(знаходження оптимальної стратегії і максимального виграшу гравця У) max_b: = V_b [1,1];
H_b: = 1; for i: = 1 to n do for j: = 1 to k do if V_b [i, j ]> max_b then begin max_b: = V_b [i, j]; (максимальний виграш гравця
B) p>
H_b: = i (оптимальна стратегіягравця B) end; p>
(знаходження найбільшого розрахункового виграшу одного з гравців) if max_a = max_b then Panel6.Visible: = true else if max_a> max_b then begin p>
Panel4.Visible: = true; panel5.Visible: = false end else begin panel5.Visible: = true; p>
Panel4.Visible: = false end; label11.Caption: = FloatToStr (max_a); label12.Caption: = FloatToStr (H_a); label14.Caption: = FloatToStr (max_b); label13.Caption: = FloatToStr (H_b);
WW_A1;end; p>
(перегляд для гравця А)procedure Tform1.W_tabliza_A (Sender: TObject);begin
WW_A1;end; p>
(перегляд для гравця B)procedure Tform1.W_tabliza_B (Sender: TObject);begin with form1 do p>
Begin c_s.Colcount: = m +1; c_s.Rowcount: = n +1; tabliza.Rowcount: = n +1; for i: = 1 to n do begin form1. tabliza.Cells [0, i]: = 'B' + intToStr (i); form1.C_S.Cells [0, i]: = 'B' + intToStr (i); p>
for j: = 1 to m do begin form1.C_S.Cells [j, 0]: = 'A' + intToStr (j); form1.C_S.Cells [j, i]: = intToStr (C_B [i, j]); end ; end; label23.caption: = 'B'; tabliza.cells [1,0]: = 'b_малая'; tabliza.cells [2,0]: = 'b_большая'; for j: = 1 to n do begin tabliza . cells [1, j]: = intToStr (b_m [j]); tabliza.cells [2, j]: = intToStr (b_b [j]); end; for i: = 1 to n do for j: = 1 to k do tabliza.cells [j 2, i]: = floatToStr (V_b [i, j]);end; end;end. p>
unit Unit2; p>
interface p>
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Grids, StdCtrls, ExtCtrls, Buttons, Menus; p>
type
TForm2 = class (TForm) alpfa: TStringGrid; p>
Panel1: TPanel; p>
BitBtn1 : TBitBtn; p>
BitBtn2: TBitBtn; procedure FormShow (Sender: TObject); procedure BitBtn2Click (Sender: TObject); p>
private p>
(Private declarations) public p>
(Public declarations) end; p>
var
Form2: TForm2; i, j: integer;implementation p>
uses osnowa; p>
($ R *. DFM)
(Введення козффіціентов оптимізмом)procedure TForm2.FormShow (Sender: TObject);begin j: = 0; form1.tabliza.Visible: = true; alpfa.Colcount: = strToInt (form1.edit3.text); for i: = 0 to alpfa.Colcount do begin j: = j +1; alpfa.Cells [i, 0]: = 'Alpha' + intToStr (i +1); alpfa.Cells [i, 1]: = FloatToStr (al [j]); end;end; p>
procedure TForm2.BitBtn2Click (Sender: TObject);begin j: = 0; for i: = 0 to alpfa.Colcount do begin j: = j +1; try al [j]: = strToFloat (trim (alpfa.Cells [i, 1])); form1.tabliza. Cells [3 + i, 0]: = alpfa.Cells [i, 1]; except showMessage ( 'Помилкова запис числа:' + alpfa.Cells [i, 1]); end; end; p>
end;end. p>
Додаток 2 Результат роботи програми p>
-----------------------< br>Гравець А p>
Гравець В p>
Стратегії гравець А p>
Стратегії гравець В p>
УС p>
СУ p >
ОУ p>
f (t) p>
U (t) p>
Продовження рис 2.4.2 p>
з стор
з стор p>
63 p>
62 p>
Оптимальна стратегія, max виграш гравця В p>
61 p>
Оптимальна стратегія, max виграш гравця А p>
60 p>
Гравця У дозволить конфліктну ситуацію p>
Ні p>
59 p>
Ні p>
так p>
Гравця А дозволить конфліктну ситуацію p>
56 p>
58 p> < p> max_a> max_b p>
max_a = max_b p>
так p>
57 p>
55 p>
Цикл 14 p>
54 p>
Цикл 15 p>
F p>
E p>
53 p>
H_b: =
сідловий точки p>
Вихід p>
Продовження рис. 2.4.2 p>
до стор p>
до стор p>
з стор p>
F p>
44
E p>
V_b [i, j]> max_b p>
так p>
52 p>
51 p>
Max_b: = V_b p>
48 p>
47 p>
50 p>
49 p>
Цикл 15 p>
p>
Цикл 14 p>
p>
H_B: = 1 p>
max_b: = V_b [1,1] p>
46 p>
Цикл 11 p>
V_b [i, j]: = al [j] * b_m [i] + + (1-al [j]) * b_b [i] p>
45 p>
Цикл 13 p>
D p>
43 p>
Цикл 13 p>
p>
Продовження рис. 2.4.2 p>
до стор p>
з стор p>
D p>
42 p>
Цикл 12 p>
C_ b [i, j]> b_b [i, j] p>
так p>
41 p>
40 p>
b_m: = C_ b p>
C_ b [i, j] так p>
39 p>
38 p>
37 p>
36 p>
35 p>
b_m: = C_ b p>
34 p>
Цикл 12 p>
p>
b_b: = C_b p>
b_m: = C_b p>
Цикл 11 p>
p>
C p>
33 p>
Цикл 9 p>
32 p>
Цикл 10 p>
Продовження рис. 2.4.2 p>
до стор p>
з стор p>
22 p>
C p>
31 p >
H_a: = p>
V_a [i, j]> max_a p>
так p>
30 p>
29 p>
Max_a: = V_ a p>
26 p>
25 p>
28 p>
27 p>
Цикл 10
p>
Цикл 9 p>
p>
H_A: = 1 p>
max_a: = V_a [1,1]
24 p>
Цикл 6 p>
V_a [i, j]: = al [j] * a_m [i] + + (1-al [j]) * a_b [i] p>
B p>
23 p>
Цикл 7 p>
Продовження рис. 2.4.2 p>
до стор p>
з стор p>
21 p>
Цикл 7 p>
p >
B p>
20 p>
Цикл 6 p>
C_ a [i, j]> a_b [i, j] p>
так p>
19 p>
18 p>
a_m: = C_ a p>
C_ a [i, j]
так p >
17 p>
16 p>
15 p>
14 p>
13 p>
a_m: = C_ a
A p>
12 p>
11 p>
Цикл 6 p>
p>
a_b: = C_a p>
a_m: = C_a p>
Цикл 5 p>
p>
Цикл 3 p>
рис 2.4.2 p>
до стор p>
10 p>
9 p>
8 p>
7 p>
6 p>
5 p>
4 p>
3 p>
2 p>
A p>
Цикл 4 p>
С_B : = C_S p>
Цикл 4 p>
p>
Цикл 3 p>
p>
Цикл 1 p>
Цикл 2 p>
С_А: = C_S p>
Цикл 2 p>
p>
Цикл 1 p>
p>
1 p>
ВХІД p>
малюнок 2.4.1 p>
6 p>
7 p>
5 p>
4 p>
3 p >
2 p>
W = 2 p>
W = 1 p>
КІНЕЦЬ p>
W_tabliza_B p>
W_tabliza_A
W_rezultat p>
W =? p>
Wwod_koef p>
1 p>
ПОЧАТОК p>