ПЕРЕЛІК ДИСЦИПЛІН:
  • Адміністративне право
  • Арбітражний процес
  • Архітектура
  • Астрологія
  • Астрономія
  • Банківська справа
  • Безпека життєдіяльності
  • Біографії
  • Біологія
  • Біологія і хімія
  • Ботаніка та сільське гос-во
  • Бухгалтерський облік і аудит
  • Валютні відносини
  • Ветеринарія
  • Військова кафедра
  • Географія
  • Геодезія
  • Геологія
  • Етика
  • Держава і право
  • Цивільне право і процес
  • Діловодство
  • Гроші та кредит
  • Природничі науки
  • Журналістика
  • Екологія
  • Видавнича справа та поліграфія
  • Інвестиції
  • Іноземна мова
  • Інформатика
  • Інформатика, програмування
  • Юрист по наследству
  • Історичні особистості
  • Історія
  • Історія техніки
  • Кибернетика
  • Комунікації і зв'язок
  • Комп'ютерні науки
  • Косметологія
  • Короткий зміст творів
  • Криміналістика
  • Кримінологія
  • Криптология
  • Кулінарія
  • Культура і мистецтво
  • Культурологія
  • Російська література
  • Література і російська мова
  • Логіка
  • Логістика
  • Маркетинг
  • Математика
  • Медицина, здоров'я
  • Медичні науки
  • Міжнародне публічне право
  • Міжнародне приватне право
  • Міжнародні відносини
  • Менеджмент
  • Металургія
  • Москвоведение
  • Мовознавство
  • Музика
  • Муніципальне право
  • Податки, оподаткування
  •  
    Бесплатные рефераты
     

     

     

     

     

     

         
     
    Динамічне подання даних
         

     

    Інформатика, програмування
    Динамічне подання сигналів.


    Багато задач радіотехніки вимагають специфічної форми представлення сигналів. Для вирішення цих завдань необхідно мати у своєму розпорядженні не тільки миттєвим значенням сигналу, але й знати як він веде себе в часі, знати його поведінка в "минулому" і "майбутнє".
    Принцип динамічного УЯВЛЕННЯ.

    Даний спосіб отримання моделей сигналів полягає в наступному:
    Реальний сигнал представляється сумою деяких елементарних сигналів, що виникають в послідовні моменти часу. Тепер, якщо ми спрямував до нуля тривалість окремих елементарних сигналів, то в межі отримаємо точне уявлення початкового сигналу. Такий спосіб опису сигналів називається динамічним поданням, підкреслюючи тим самим, що розвивається у часі характер процесу.
    На практиці широке застосування знайшли два способи динамічного подання.
    Перший спосіб як елементарних сигналів використовує ступінчасті функції, які виникають через рівні проміжки часу? . Висота кожної сходинки дорівнює приросту сигналу на інтервалі часу?. У результаті сигнал може бути представлений як на малюнку 1.
                                                       
    рис. 1
    При другому способі елементарними сигналами служать прямокутні імпульси. Ці імпульси безпосередньо примикають один до одного і утворюють послідовність, вписану в криву або описану навколо неї. У цьому випадку вихідний

    Тепер розглянемо властивості елементарних сигналів. Для початку: що використовується для динамічного подання за першим способом.

    ФУНКЦІЯ ВКЛЮЧЕННЯ.

    Припустимо є сигнал, математична модель якого виражається системою:

    0, t <-?,>< br /> u (t)? ? 0.5 (t /? +1), -? ? t? ?, (1)
              t>?.

    Така функція описує процес переходу деякого фізичного об'єкта з "нульового" в "одиничне" стан.
                     
    Перехід здійснюється за лінійним законом за час 2?. Тепер якщо параметр? спрямувати до нуля, то в межі перехід з одного стану в інший буде відбуватися миттєво. Така математична модель граничного сигналу


    У загальному випадку функція включення може бути зміщена відносно початку відліку часу на величину t0. Запис зміщеної функції така:


    ДИНАМІЧНОЇ ПОДАННЯ ДОВІЛЬНІЙ СИГНАЛУ ЧЕРЕЗ ФУНКЦІЙ ВКЛЮЧЕННЯ.

    Розглянемо деякий сигнал S (t), причому для визначеності скажемо, що S (t) = 0 при t
              ?
    s (t)? s0? (t) + (s1-s0)? (t-?)+...= s0? (t) +? (sk-sk-1)? (tk?).
    k = 1

    * Якщо тепер крок? спрямувати до нуля. то дискретну змінну k? можна замінити безперервної змінної?. При цьому малі прирощення значення сигналу перетворюються на диференціали ds = (ds/d?) D? , І ми отримуємо формулу динамічного подання довільного сигналу за допомогою функцій Хевісайда
                       ?
                       ? ds
    S (t) = s0? (T) +? ? (t-?) d? (4)
                       ? d?
                       0

    Переходячи до другого способу динамічного подання сигналу, коли елементами розкладу служать короткі імпульси, слід ввести нове важливе поняття - поняття дельта-функції.

    ДЕЛЬТА - ФУНКЦІЯ.

    Розглянемо імпульсний сигнал прямокутної форми, поставлене таким чином:
     
                          1? ? ? ?
    u (t;?) = -----? ? (t + ----) -? (t - ----)? (5)
                    ? ? 2 2?


          
    При будь-якому виборі параметра? площа цього імпульсу
    дорівнює одиниці:
              ?
    П =? u dt = 1
                                -?

    Наприклад, якщо u - напруга, то П = 1 В * с.
    Тепер спрямував величину? до нуля. Impuls, скорочуючись по тривалості, зберігає свою площу, тому його висота має необмежено зростати. Границя послідовності таких функцій при? ? 0 носить назву дельта-функції, або функції Дірака1:

    (t) = lim u (t;?)

    Дельта функція - цікавий математичний об'єкт. Будучи рівною нулю всюди, крім як в точці t = 0 2 дельта-функція тим не менше володіє одиничним інтегралом. А ось так виглядає символічне зображення дельта-функції:

                                         

    ДИНАМІЧНОЇ ПОДАННЯ СИГНАЛУ ЧЕРЕЗ ДЕЛЬТА-ФУНКЦІЙ.


    Тепер повернемося до задачі опису аналогового сигналу сумою примикають один до одного прямокутних імпульсів (рис. 2). За допомогою дельта-функції u (t) представимо у вигляді сукупності примикають імпульсів. Якщо Sk - значення сигналу на k - му відліку, то елементарний імпульс з номером k представляється як:

    ? k (t) = Sk [? (t - tk) -? (t - tk -?)] (6)
                          
    Відповідно до принципу динамічного подання вихідний сигнал S (t) має розглядатися як сума таких елементарних складових:
                        ?
    S (t) =? ? (t) (7)
                       k = -? k

    У цій сумі відмінним від нуля буде тільки один член, а саме той, що задовольняє умові для t:

                                     tk

    Тепер, якщо провести підстановку формули (6) у (7) попередньо розділивши і помноживши на величину кроку?, То

                      ? 1
    S (t) =? Sk --- [? (T - tk) -? (T - tk -?)]?
                      k =-? ?

    Переходячи до границі при? ? 0, необхідно підсумовування замінити інтеграцією з формальної змінної?, Диференціал якої d? , буде відповідати величиною? .

    Оскільки
                          1
    lim [? (t - tk) -? (t - tk -?)] ---
                                        ??? ?

    отримаємо шукану формулу динамічного подання сигналу

                   ?
    S (t) =? s (?)? (t -?) d?
               -?

    Отже, якщо безперервну функцію помножити на дельта-функцію і твір проінтегрувати за часом, то результат буде дорівнює значенням неперервної функції в тій точці, де зосереджений? - Імпульс. Прийнято говорити, що в цьому полягає фільтруюче властивість дельта-функціі.3

    З визначення дельта-функції слід (3). Отже, інтеграл дельта-функції від -? до t є одиничний стрибок, і дельта-функцію можна розглядати як похідну одиничного стрибка:

    ? (t) = 1 '(t);
    ? (t-t0) = 1 '(t-t0).

    Узагальнені функції як математичні моделі сигналів.

    У класичної математики вважають, що функція S (t) повинна Прінемаемие якісь значення в кожній точці осі t. Однак розглянута функція? (T) не вписується в ці рамки - її значення при t = 0 не визначено взагалі, хоча ця функція і має одиничний інтеграл. Виникає необхідність розширити поняття функції як математичної моделі сигналу. Для цього в математиці було введено принципово нове поняття узагальненої функції.
     В основі ідеї узагальненої функції лежить просте інтуїтивне міркування. Коли ми тримаємо в руках якийсь предмет, то намагаємося вивчити його з усіх боків, як би отримати проекції цього предмета на всілякі площині. Аналогом проекції досліджуваної функції? (T) може служити, наприклад, значення інтеграла

    при відомій функції? (t), яку називають пробної функцією.
    Кожній функції? (T) відповідає, в свою чергу, деяке конкретне числове значення. Тому кажуть, що формула (8) задає деякий функціонал на множині пробних функцій? (T). Безпосередньо видно, що даний функціонал лине, тобто

    Якщо цей функціонал до того ж ще і безперервний, то говорять, що на безлічі пробних функцій? (T) задана узагальнена функція? (T) 4. Слід сказати, що цю функцію треба розуміти формально-аксіоматично, а не як межа відповідних інтегральних сум.
    Узагальнені фнкціі, навіть не задані явними виразами, володіють багатьма властивостями класичних функкцій. Так, узагальнені функції можна диференціювати.


    І на закінчення слід сказати, що в даний час теорія узагальнених функцій одержала широкий розвиток і численні застосування. На її основі створені математичні методи вивчення процесів, для яких кошти класичного аналізу виявляються недостатніми.






         
     
         
    Реферат Банк
     
    Рефераты
     
    Бесплатные рефераты
     

     

     

     

     

     

     

     
     
     
      Все права защищены. Reff.net.ua - українські реферати ! DMCA.com Protection Status